Chem. Ber. 116, 1479-1486 (1983)

Beiträge zur Chemie des Bors, 131¹⁾

Ein neues Ringsystem des Bors: 1,4-Dimethyl-1,4-dithionia-2,5-diboratacyclohexan

Heinrich Nöth * und Dieter Sedlak

Institut für Anorganische Chemie der Universität München, Meiserstr. 1, D-8000 München 2

Eingegangen am 6. August 1982

Über Li[CH₃SCH₂BH₃] (2) wurde (CH₃)₃N \cdot BH₂CH₂SCH₃ (3) dargestellt, das mit CH₃I in das Sulfoniumsalz [(CH₃)₃N \cdot BH₂CH₂S(CH₃)₂]I (4), bei der Thermolyse in die Titelverbindung **8** übergeht. Letztere enthält nach Röntgenstrukturanalyse einen Sechsring in Sesselkonformation mit äquatorial angeordneten Methylgruppen.

Contributions to the Chemistry of Boron, 131¹⁾

A New Ring System of Boron: 1,4-Dimethyl-1,4-dithionia-2,5-diboratacyclohexane

 $(CH_3)_3N \cdot BH_2CH_2SCH_3$ (3) was prepared via Li[CH_3SCH_2BH_3] (2). It reacts with CH_3I to yield the sulfonium salt [(CH_3)_3N \cdot BH_2CH_2S(CH_3)_2]I (4) and decomposes on heating to the title compound 8. The latter contains a six-membered ring in chair conformation and the methyl groups in equatorial positions as revealed by X-ray crystallography.

In der vorausgehenden Mitteilung¹⁾ zeigten wir, daß die Umsetzung von Organolithium-Verbindungen mit verschiedenen Boran(3)-Donatoren nur dann zu Lithium-organyltrihydridoboraten Li[RBH₃] führt, wenn die konkurrierende Hydridübertragungsreaktion soweit als möglich unterdrückt wird. Diese Verbindungen dienen der Synthese C-funktioneller Organoborane. Beispielsweise könnte ein Boranalogon des Acetylcholins (6)²⁾ gemäß (1) über die Vorstufe eines Li[CH₃SCH₂BH₃] (2) dargestellt werden. Wir berichten nachfolgend über Darstellung dieses Hydridoborats, seine Überführung in (CH₃)₃N · BH₂CH₂SCH₃ (3) sowie dessen Thermolyse.

Reaktion von LiCH₂SCH₃ (1) mit Trimethylamin-Boran

Zur Darstellung von Monoorganyltrihydridoboraten aus Organyllithium-Verbindungen eignet sich im Fall von N, N, N', N'-Tetramethylethylendiamin(TMEDA)-Komplexen, TMEDA · LiR, nur (CH₃)₃N · BH₃¹⁾. Da LiCH₂SCH₃ (1) nach *Peterson*³⁾ aus LiC₄H₉, CH₃SCH₃ und TMEDA *in situ* entsteht, war (CH₃)₃N · BH₃ als Boran-Reagens zu verwenden. Die Umsetzung von 1 in siedendem Hexan/Toluol führt nach (1a) zum Trihydridoborat **2** als Hauptprodukt. In Nebenreaktionen, die wir bereits beschrieben¹⁾, entstehen LiC₆H₅CH₂BH₃, LiBH₄ und wenig (rd. 2%) Li(CH₃)₂N-CH₂BH₃, letzteres durch Deprotonieren von (CH₃)₃N · BH₃⁴⁾. Führt man die Umsetzung nach (1 a) in Benzol durch, dann fällt kein Benzyltrihydridoborat an, dafür aber ein höherer Anteil an $\text{Li}(\text{CH}_3)_2\text{NCH}_2\text{BH}_3$. Alle Hinweise deuten darauf hin, daß diese Nebenreaktionen durch freies LiC_4H_9 , das sich noch nicht zu 1 umgesetzt hat, ausgelöst werden.

Eine Isolierung von 2 gelang nicht. Jedoch konnten seine ¹¹B- und ¹³C-NMR-Daten bestimmt werden, nicht jedoch die δ ¹H-Werte wegen zu starker Überlappung mit den Signalen der Nebenprodukte.

Trimethylamin-(Methylthiomethyl)boran (3) und Trimethylamin-(Borylmethyl)dimethylsulfonium-iodid (4)

Zur Abtrennung der komplexgebundenen (Methylthiomethyl)boran-Komponente vom RBH₃⁻/BH₄⁻-Gemisch wird dieses mit Trimethylammonium-chlorid in die Addukte (CH₃)₃N · BH_{3-n}R_n übergeführt. **3** entsteht dabei nach (1). Durch wäßrige Aufarbeitung trennt man LiCl und TMEDA weitgehend ab; ein Teil des gebildeten (CH₃)₃N · BH₃ läßt sich absublimieren. Die Abtrennung weiterer Begleitprodukte von **3** durch Sublimation oder Destillation mißlingt wegen dessen geringer thermischer Stabilität. Geringe Löslichkeitsunterschiede vereiteln außerdem eine Reinigung durch fraktionierende Kristallisation. Die Abtrennung von **3** gelingt aber leicht durch Überführen in das Sulfoniumsalz **4**, das sich so in etwa 50% Gesamtausbeute gewinnen läßt.

Nucleophile greifen die S – C-Bindung von Sulfoniumsalzen meist leicht an. Mittels CH₃I/KI erfolgt die Umwandlung von **4** in das Iodmethylboran-Addukt **5** nach (c) jedoch nicht. In siedendem Ethanol durchgeführt, wurde ein ¹¹B-NMR-Signal beobachtet, das auf die Bildung von $(C_2H_5O)_2BCH_2I$ schließen läßt. Eindeutig charakterisiert werden konnte das Reaktionsprodukt bei Verwendung von Brenzcatechin. Es entsteht das 1,3,2-Benzodioxaborol-Derivat **7** nach (2).

Die Methylierung von 3 gelingt im Vergleich mit anderen Diorganylsulfiden sehr leicht. In Übereinstimmung damit steht die erheblich erschwerte Spaltung der CS-Bindung⁵⁾. Beides führen wir auf den +I-Effekt der Borylgruppe in 3 bzw. 4 zurück. Im Gegensatz dazu bilden Diorganylsulfide, die über eine Gruppe mit starkem – I-Effekt verfügen, etwa (Acetoxymethyl)methylsulfid, kein isolierbares Sulfonium-Salz mit CH₃I, da die Abspaltung von Acetoxymethyl-iodid von der Sulfonium-Zwischenstufe rascher erfolgt als die Bildung des Sulfonium-Salzes⁶⁾. Der +I-Effekt der Borylgruppe drückt sich in einer Hochfeldverschiebung des ¹H-NMR-Signals der CH₂-Gruppe um 0.4 ppm aus (vgl. Tab. 1).

6 ¹¹ B ¹ /(¹¹ B ¹ H) 2/(¹¹ B ¹ H) 6 ¹³ C 8 ¹³ C 8 ¹³ C 8 ¹³ C 8 ¹⁴ B ¹³ C 8 ¹⁴ B ¹³ C 8 ¹⁴ B ¹³ C	LiCH ₃ SCH ₂ BH ₃ - 30.5					
<pre> ^{6 11}B ¹/(¹¹B¹H) ¹/(¹¹B¹H) ²/(¹¹B¹H) ¹/(¹¹B¹H) ¹/(¹¹B¹¹C) ¹/(¹¹B¹¹C) ¹/(¹¹B¹¹C) ¹/(¹¹B¹¹C) ¹/(¹¹B¹¹C) ¹/(¹¹B¹¹C) ¹/(¹¹B¹¹²C) ¹/(¹¹C) ¹/(¹¹C) ¹/(¹¹C)</pre>	- 30.5	$(CH_3)_3N \cdot BH_2CH_2SCH_3$	[(CH ₃) ₃ N · BH ₂ CH ₂ S(CI	I ₃)2]I [(8 A	H ₃ SCH ₂ E	3H ₂] ₂ 8в
¹ /(¹¹ B ¹ H) ² /(¹¹ B ¹ H) 8 ¹³ C BCH ₂ 8 ¹³ C SCH ₃ 1/(¹¹ B ¹³ C) ³ /(¹¹ B ¹³ C) 8 ¹ H BCH,		- 3.9	- 7.2a)	- 13.6		-17.2
² /(¹¹ B ¹ H) 8 ¹³ C BCH ₂ 8 CH ₃ 17(¹¹ B ¹³ C) ³ /(¹¹ B ¹³ C) 8 ¹ H BCH ₃	77	8	97.5	105	-	105
<pre></pre>	5.0	J	1	1	•	
SCH ₁ SCH ₁ NCH ₁ J(¹¹ B ¹³ C) J(¹¹ B ¹³ C) S ¹ H BCH,	24.1	23.1 breit	30.9	29.6		24.5
NCH ₃ 1/(¹¹ B ¹³ C) 3/(¹¹ B ¹³ C) 5 ¹ H BCH,	20.6	19.9	28.1	25.9		21.9
¹ <i>J</i> (¹¹ B ¹³ C) ³ <i>J</i> (¹¹ B ¹³ C) 8 ¹ H BCH,	I	52.7	53.0			
³ J(¹¹ B ¹³ C) 8 ¹ H BCH,	46.0	I	1	I		1
δ ¹ H BCH,	=2	I	I	49.0		0.04
	I	1.75 t	2.84 fb)	1.6–	7 1c)	16-730
SCH	I	2.07 s	3 12 6	2.16		2.2 2.7
NCH	I	222				67.7
		S CC.7	S C / - 7	1		I
; ; BH ₂	I	3	1.80 t	I		I
(H,H)/c	I	6	6.5	1		I
	I	Q	6.5	1		L

Chem. Ber. 116 (1983)

1481

1,4-Dimethyl-1,4-dithionia-2,5-diboratacyclohexan (8)

Das Addukt **3** spaltet beim Erhitzen im Vakuum leicht Trimethylamin ab⁷⁾. Das freigesetzte (Methylthiomethyl)boran dimerisiert gemäß (3) zu dem neuen Sechsringsystem **8** des Bors. Diese Zersetzung entspricht der von *Miller* an $(CH_3)_3N \cdot BH_2CH_2N(CH_3)_2$ aufgefundenen, die zum N-analogen Sechsring $[(CH_3)_2N - CH_2 - BH_2]_2$ führt^{4a)}.

Die NMR-spektroskopische Untersuchung von 8 (¹¹B, ¹³C, ¹H) liefert jeweils 2 Signale bzw. Signalgruppen (vgl. Tab. 1). Dies legt entweder Isomere oder Konformere nahe, da im Massenspektrum von 8 nur das Molekülion als höchste Masse registriert wurde und keines der beiden ¹¹B-NMR-Signale im Bereich dreifach koordinierten Bors liegt. Nimmt man an, daß 8 ähnlich wie das N-Analoge^{4b)} die Sesselkonformation bevorzugt, dann sind die Konformationsisomeren 8A und 8B bzw. die Konfigurationsisomeren 8B und 8C zu berücksichtigen. Auch andere Ringkonformationen können a priori nicht ausgeschlossen werden.

Da 8 gut kristallisiert, wurde eine Röntgenstrukturanalyse durchgeführt, die zeigt, daß im festen Zustand 8A vorliegt. Dies bestätigte unsere Vermutung, daß die NMR-Spektren durch ein Gleichgewicht $8A \Rightarrow 8B$ zu beschreiben sind, das sich beim Auflösen der 8-Kristalle in CH₂Cl₂, C₆H₆ und THF rasch einstellt. Bei Raumtemperatur liegt das Gleichgewicht in CH₂Cl₂ zu 80% auf der 8B-Seite.

Kristall- und Molekülstruktur von 8

8 kristallisiert aus Petrolether monoklin in klaren, einfachen Rhomben. Da die Elementarzelle der Raumpruppe $P 2_1/c$ zwei 8-Moleküle enthält, muß das 8-Molekül ein kristallographisch bedingtes Inversionszentrum besitzen. Abb. 1 zeigt die Molekülstruktur. Bindungsabstände und -winkel finden sich in Tab. 2.

Das Molekül 8 liegt im festen Zustand in der Sesselkonformation vor mit *trans*äquatorialer Anordnung der Methylgruppen. Der CSC-Winkel ist etwas größer als die beiden gleichen BSC-Winkel. Dem Tetraederwinkel stärker nähern sich die Bindungswinkel an den Bor- und Ring-C-Atomen. Die beiden BH-Bindungslängen unterscheiden sich deutlich, wobei die axiale länger ist. Die Unterschiede bei den Methylenwasserstoffen sind hingegen nicht signifikant.

Die Torsionswinkel in der Abfolge der Ringatome variieren zwischen 52 und 69°, d.h. das Ringsystem gleicht weitgehend dem des Cyclohexans, wobei die stärkere Verdrillung auf die "spitzen" Bindungswinkel an den S-Atomen zurückgeht.

Abb. 1. ORTEP-Plot und Stereoplot der Molekülstruktur von 8

Die Struktur von 8 ist am besten vergleichbar mit $(CH_3)_2 S \cdot BH_3$. Durch BH_3 -Addition an $(CH_3)_2 S$ ändert sich dessen Struktur nur wenig. Auch 8 besitzt Bindungsabstände und -winkel, die jenen von $(CH_3)_2 S \cdot BH_3$ sehr ähnlich sind, z. B. der C₂S-Bindungswinkel (105° im Vergleich zu 104.2° in 8) oder die SC-Abstände (182 ± 3 pm), da diese innerhalb der Signifikanzgrenzen als gleich (179.5 pm) anzusehen sind. Dies läßt darauf schließen, daß den Schwefelatomen kein sehr ausgeprägter Sulfonium-Charakter zukommt, denn im Trimethylsulfonium-iodid⁸⁾ weiten sich die SC-Abstände bis auf 185 (1) pm auf. Ebensowenig besitzen die borständigen H-Atome Hydridoborat-Charakter (B-H 125 (2) pm)⁹; sie sind sogar noch kürzer als terminale BH-Bindungen von Diboran¹⁰⁾. Insgesamt gleichen die Strukturparameter von 8 weitgehend jenen von (CH₃)₂S · BH₃ (B-S 185 pm)¹¹⁾.

Wir danken der Deutschen Forschungsgemeinschaft, dem Fonds der Chemischen Industrie, der BASF Aktiengesellschaft und der Metallgesellschaft AG für finanzielle Unterstützung bzw. Chemikalienspenden. Fräulein E. Hannecker gilt unser Dank für engagierte Mitarbeit sowie Fräulein H. Bauer für die Aufnahme von NMR-Spektren.

Experimenteller Teil

Alle Versuche wurden unter Feuchtigkeitsausschluß durchgeführt und Lösungsmittel sowie Reagenzien nach konventionellen Methoden entwässert. – NMR-Spektren: Varian FT 80, Bruker-WP 200. – Massenspektren: Varian CH 7.

Reaktion von TMEDA · LiCH₂SCH₃ mit $(CH_3)_3N \cdot BH_3$ in Benzol: Zu 15 mmol TMEDA · LiCH₂SCH₃³⁾ in 10 ml Hexan fügte man eine Lösung von 880 mg (12 mmol) $(CH_3)_3N \cdot BH_3^{8)}$ in

Chem. Ber. 116 (1983)

	δ ¹¹ Β	15 min	30 min	60 min	120 min	210 min
	ppm mol-%					
$(CH_3)_3N \cdot BH_3$	- 7.3	90	80	68	50	30
LiCH ₃ SCH ₂ BH ₃ (2)	- 29.8	5	10	21	37	48
LiBH ₄	- 40.5	-	1	1	2	7
LiB(CH ₂ SCH ₃) ₄	-17.7	2	4	3	3	2
Li(CH ₃) ₂ NCH ₂ BH ₃	-2.9	3	5	7	8	13

5 ml Benzol. Dabei färbte sich die Lösung grün. Nach 3.5 h wurde die Umsetzung abgebrochen, da keine hohe Ausbeute an 2 zu erwarten war.

Reaktion von TMEDA · LiCH₂SCH₃ mit $(CH_3)_3N \cdot BH_3$ in Toluol: Zu 240 mmol TMEDA · LiCH₂SCH₃ in 149 ml Hexan tropfte man unter Rühren eine Lösung von 16.0 g (220 mmol) $(CH_3)_3N \cdot BH_3$ in 180 ml Toluol. Danach wurde der Kolben in ein Ölbad von 110°C getaucht. Die Lösung färbte sich dabei intensiv orange, und es entwichen Butan und Trimethylamin. Die ¹¹B-NMR-Kontrolle wurde nach 16 h unterbrochen:

_	δ ¹¹ Β	1 h	2 h	3 h	16 h		
	ppm	mol-%					
$(CH_3)_3N \cdot BH_3$	- 7.6	35	25	18	5		
2	- 30.5	50	60	65	70		
Li(CH ₃) ₂ NCH ₂ BH ₃	-33.1	3	2	2	2		
LiC ₆ H ₅ CH ₂ BH ₃	-26.8	7	6	8	11		
LiBH4	- 40.6	5	7	9	12		

Nach dem Abkühlen wurden 50 ml der nur leicht trüben Lösung auf die Hälfte des ursprünglichen Volumens eingeengt. Es gelang nicht, das TMEDA-2-Addukt in der Kälte zur Kristallisation zu bringen.

Versuch zur Isolierung von Trimethylamin-(Methylthiomethyl)boran (3): Die restliche Reaktionslösung des vorausgehend beschriebenen Versuchs wurde mit 18.4 g (190 mmol) [(CH₃)₃NH]Cl unter Rühren portionsweise versetzt. Nach Abklingen der Wasserstoffentwicklung zeigten Signale bei $\delta^{11}B - 1.5$ (CH₃)₃N · BH₂CH₂C₆H₅, bei - 3.9 (CH₃)₃N · BH₂CH₂SCH₃ (3) und bei - 7.6 (CH₃)₃N · BH₃ an (Verhältnis 85:15 für die beiden ersten Signale zum (CH₃)₃N · BH₃-Signal). Das Unlösliche wog 8.72 g (nahezu reines LiCl).

Die klare, unangenehm riechende Lösung wurde mehrmals mit insgesamt 500 ml Wasser ausgeschüttelt. Das Trocknen der organischen Phase mit MgSO₄ mußte rasch erfolgen, um die H₂-Entwicklung möglichst zu unterdrücken. In der wäßrigen Phase fand sich das ¹¹B-NMR-Signal von $(CH_3)_3 N \cdot BH_2CH_2N(CH_3)_2 (\delta^{11}B - 4.7^{4a})$. Das Signal bei $\delta^{11}B - 9.5$ ist TMEDA $\cdot BH_3$ zuzuordnen. Nicht zuzuordnen ist ein Signal bei 2.5 ppm. Die destillative Aufarbeitung führte zu keiner reinen Verbindung. Mehrere Fraktionen zwischen $65 - 80 \circ C/10^{-2}$ Torr zeigten unterschiedliche Mengen an 3, $(CH_3)_3 N \cdot BH_3$ und 8 an ($\delta^{11}B - 3.9$, -8.1 sowie -13.6 und -17.2).

Trimethylamin-(Borylmethyl)dimethylsulfonium-iodid (4): Wie vorstehend beschrieben, brachte man 720 mmol TMEDA · 1 mit 620 mmol (CH₃)₃N · BH₃ in Hexan/Toluol zur Reaktion. Nach ¹¹B-NMR-Kontrolle lagen in der Lösung 58 mol-% 2 vor. Nun wurde die Lösung mit einem [(CH₃)₃NH]Cl-Überschuß (750 mmol) umgesetzt und die nach Abfritten von LiCl mit Wasser ausgewaschene organische Phase unter Rühren mit 40 ml (610 mmol) CH₃I versetzt. Dabei bildete

Chem. Ber. 116 (1983)

sich sehr rasch ein unlösliches Produkt. Es wurde in 800 ml CH_2Cl_2 unter Rühren aufgenommen. Nach Abfiltrieren vom Unlöslichen fällte der Zusatz von 500 ml *n*-Pentan das Sulfoniumsalz 4, das mit einem eiskalten 1:1-Gemisch von Pentan/ CH_2Cl_2 gewaschen und bei 50°C/10⁻² Torr getrocknet wurde. Ausb. 91 g (53%), Schmp. 134–135°C. – NMR-Daten: siehe Tab. 1.

C₆H₁₉BINS (275.0) Ber. C 26.21 H 6.96 I 46.15 N 5.09 Gef. C 26.38 H 6.9 I 46.3 N 5.21

Umsetzung von 4 mit Brenzcatechin und Methyliodid: 9.65 g (35.1 mmol) 4, 3.86 g (35.1 mmol) Brenzcatechin und 9.94 g (70.0 mmol) CH₃I wurden in 50 ml Aceton 3 h unter Rückfluß gehalten. Danach wurde vom unlöslichen Tetramethylammonium- und Trimethylsulfonium-iodid (14 g, 97%) abgefrittet und Leichtflüchtiges vom Filtrat abkondensiert. Der zähflüssige Rückstand, in CH₂Cl₂ gelöst, zeigte im ¹¹B-NMR-Spektrum ein einziges Signal, $\delta^{11}B = 34.3$ (typisch für BO₂C-Strukturelement). Im ¹H-NMR-Spektrum lag ein breites Multiplett bei 6.9 ppm und ein scharfes Singulett bei 2.09 ppm (Intensität 2.3:1) vor, neben weniger intensiven Signalen bei 2.05, 1.22, 1.14 und 0.65 ppm (5% der Gesamtintensität). Nach den NMR-Daten lag 2-(Iodmethyl)-1,3,2-benzodioxaborol (7) vor. Das Unlösliche zeigte im ¹H-NMR-Spektrum in D₂O-Lösung zwei scharfe Signale bei $\delta = 3.10$ und 3.06 (Intensitätsverhältnis 3.8:3), entsprechend einem Verhältnis von 0.95:1 für [(CH₃)₄N]I und [(CH₃)₃S]I.

Beim Versuch der Isolierung von 7 durch Destillation trat Zersetzung ein.

1,4-Dimethyl-1,4-dithionia-2,5-diboratacyclohexan (8): Ausgehend von 50 mmol TMEDA - LiCH₂SCH₃ wurde, wie oben beschrieben, 3 in Mischung mit den Begleitaddukten hergestellt. Nach Verjagen der Lösungsmittel verblieb ein zähflüssiger Rückstand. Dieser wurde in einen 500-ml-Kolben übergeführt, über dessen 29-NS-Schliff ein Sublimationsfinger aufgesetzt war. Im dynamischen Vakuum (10^{-1} Torr) wurde das Produktgemisch bei $100 \circ C$ zersetzt. Nach rd. 3 h wurden die Kristalle vom Sublimationsfinger mit Pentan "abgespült", abgefrittet und getrocknet. Ausb. 1.12 g (30%), Schmp. $102 - 104 \circ C$. 8 läßt sich aus THF/Pentan oder CH₂Cl₂/Pentan umlösen. Während die bei der Sublimation anfallenden Kristalle nadel- und würfelförmigen Habitus zeigten, bestand das umgelöste Produkt einheitlich aus rhombenartigen Kristallen. – NMR-Daten: siehe Tab. 1.

C₄H₁₄B₂S₂ (147.9) Ber. C 32.48 H 9.54 B 14.62 Gef. C 32.14 H 9.50 B 14.70 Molmasse (¹¹B): 148 (MS, Isotopenmuster entspricht 2 B-Atomen im Molekül)

Röntgenstrukturanalyse von 8*)

Ein Einkristall von 8 ($0.4 \times 0.5 \times 0.6 \text{ mm}^3$) wurde unter Argon in einem Lindemannröhrchen montiert, am Syntex R 3-Vierkreisdiffraktometer optisch zentriert und Orientierungsmatrix sowie die Dimensionen der Elementarzelle aus 25 zentrierten Reflexen ermittelt (a = 5.434 (1), b =6.404 (1), c = 12.604 (3) Å, $\beta = 100.38$ (2)°; V = 431.5 (2) Å³; Z = 2, $d_r = 1.14$ g/cm³, $d_{exp} =$ 1.13 g/cm³). Aus systematisch abwesenden Reflexen folgte die Raumgruppe $P2_1/c$. Im Bereich $2^\circ < 2\Theta < 50^\circ$ wurden insgesamt 969 Intensitäten einschließlich der Checkreflexe (2 nach je 48 Messungen, variable Meßgeschwindigkeit von $1-29.3^\circ$ /min, $1^\circ/1^\circ$ Scan-Breite/Untergrund; Messung im $\omega/2\Theta$ -Scan) gemessen. Von den 758 symmetrieunabhängigen Reflexen wurden 713 mit $I > 1.96\sigma(I)$ als beobachtet eingestuft. Die Lage des Schwefelatoms wurde einer Patterson-Synthese entnommen, die restlichen Nichtwasserstoffatome folgten aus einer Fourier-Synthese.

^{*)} Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD 50255, des Autors und des Zeitschriftenzitats angefordert werden.

Nach Verfeinerung mit isotropen, danach mit anisotropen Temperaturparametern ließen sich die Lagen aller H-Atome entnehmen. Letztere wurden in die abschließende Verfeinerung mit isotropen Temperaturfaktoren einbezogen. Sie konvergierte bei R = 0.029 (65 Parameter). Zur Strukturlösung benutzten wir das XTL-Programmpaket; die Plots wurden mit den SHELXTL-Programmen erzeugt. Die Atomparameter enthält Tab. 3.

x/a	y/b	z/c	В		
.07237(8)	.23634(6)	.06598(3)			
.13363(36)	.17983(30)	.06645(13)			
.35586(45)	.35524(41)	.013437(19)			
.08926(44)	03979(33)	.13226(15)			
.27830(378)	10586(334)	.13166(131)	4.5(4)		
.06461(444)	01485(337)	.21189(179)	5.4(4)		
.13481(388)	,30750(375)	10546(161)	4.3(5)		
.28982(393)	.11378(307)	05999(131)	3.7(4)		
.35021(537)	.37577(447)	.20978(233)	8.0(7)		
.38197(570)	,47518(508)	.10601(209)	7.7(7)		
.48999(614)	.26885(372)	.12429(245)	6.6(8)		
B ₁₁	^B 22	B ₃₃	B ₁₂	⁸ 13	B ₂₃
3.0(0)	2.9(0)	3.2(0)	0(0)	.5(0)	4(0)
3.8(1)	3.3(1)	3.1(1)	1(1)	1.0(1)	.3(1)
4.3(1)	4.6(1)	5.0(1)	-1.0(1)	.1(1)	-1.1(1)
4.4(1)	3.8(1)	2.5(1)	2(1)	.4(1)	.2(1)
	$\frac{x/a}{.07237(-8)}$.13363(-36) .35586(-45) .08926(-44) .27830(378) .06461(444) .13481(388) .28982(393) .35021(537) .38197(570) .48999(614) $\frac{B_{11}}{3.0(0)}$ 3.8(1) 4.3(1) 4.4(1)	x/a y/b .07237(8) .23634(6) .13363(36) .17983(30) .35586(45) .35524(41) .08926(44) 03979(33) .27830(378) 10586(334) .06461(444) 01485(337) .13481(388) .30750(375) .28982(393) .11378(307) .35021(537) .37577(447) .38197(570) .47518(508) .48999(614) .26885(372) B ₁₁ B ₂₂ 3.0(0) 2.9(0) 3.8(1) 3.3(1) 4.3(1) 4.6(1) 4.3(1) 3.8(1)	x/a y/b z/c .07237(8) .23634(6) .06598(3) .13363(36) .17983(30) .06645(13) .35586(45) .35524(41) .013437(19) .08926(44) 03979(33) .13226(15) .27830(378) 10586(334) .13166(131) .06461(444) 01485(337) .21189(179) .13481(388) .30750(375) 10546(161) .28982(393) .11378(307) 05999(131) .35021(537) .37577(447) .20978(233) .38197(570) .47518(508) .10601(209) .48999(614) .26885(372) .12429(245) B ₁₁ B ₂₂ B ₃₃ 3.0(0) 2.9(0) 3.2(0) 3.8(1) 3.3(1) .1(1) 4.3(1) 4.6(1) 5.0(1) 4.4(1) 3.8(1) 2.5(1)	x/a y/b z/c B .07237(8) .23634(6) .06598(3)	x/ay/b $2/c$ B.07237(8).23634(6).06598(3).13363(36).17983(30).06645(13).35586(45).35524(41).013437(19).08926(44)03979(33).13226(15).27830(378)10586(334).13166(131).06461(444)01485(337).21189(179)5.4(4).13481(388).30750(375)10546(161).35021(537).37577(447).20978(233).38197(570).47518(508).10601(209)7.7(7).48999(614).26885(372).12429(245)6.6(8)B11B22B33B12B133.0(0)2.9(0)3.2(0)0(0).5(0)3.8(1)3.3(1)3.1(1)1(1)4.4(1)3.8(1)2.5(1)2(1).4(1)

Tab. 3. Atomparameter und B_{ii} -Werte der Temperaturfaktoren von 8

¹⁾ 130. Mitteil.: W. Biffar, H. Nöth und D. Sedlak, Organometallics, im Druck.

²⁾ D. Sedlak, Dissertation, Univ. München 1982.

³⁾ D. J. Peterson, J. Org. Chem. 32, 1717 (1967).

- ⁴⁾ Diese Reaktion ähnelt der von N. E. Miller beschriebenen Deprotonierung von $[(CH_3)_3N]_2BH_2^+$, die zu $(CH_3)_3N \cdot BH_2CH_2N(CH_3)_2$ führt: ^{4a)} N. E. Miller, J. Am. Chem. Soc. **88**, 4284 (1966). ^{4b)} N. E. Miller, M. D. Murphy und D. L. Reznicek, Inorg. Chem. **5**, 1832 (1966). ^{4c)} N. E. Miller und D. L. Reznicek, Inorg. Chem. **8**, 275 (1969).
- ⁵⁾ Methoden der organischen Chemie (*Houben-Weyl-Müller*), Bd. 9, S. 171, Thieme, Stuttgart 1955.
- ⁶⁾ D. Sedlak, Diplomarbeit, Univ. München 1979.

⁷⁾ Diese Abspaltung muß unter kontrollierten Bedingungen erfolgen, da eine Normaldruckzersetzung hauptsächlich nichtflüchtige, offenbar polymere Produkte liefert.

- ⁸⁾ D. E. Zuccaro und J. D. McCullough, Z. Krist. 112, 401 (1959).
- 9) P. T. Ford und R. E. Richards, Disc. Faraday Soc. 19, 230 (1955).
- ¹⁰⁾ L. S. Bartell und L. Carroll, J. Chem. Phys. 42, 1135 (1965).

¹¹⁾ Erhalten aus (CH₃)₃N und BH₃ · THF und Ausfällen mit Petrolether (40 - 60°C); Schmp. 92-93°C; Ausb. 90%, H. Nöth und H. Beyer, Chem. Ber. 93, 928 (1960).

[249/82]